

DNS Magnitude

"How popular is this Domain?" yet another (DNS based) approach

Copenhagen 2017-03-13

Alexander Mayrhofer Head of R&D

Motivation

Hey buddy - do ya know how popular my Domain Name is?

Well, it had 94132 queries. Yesterday, that is.

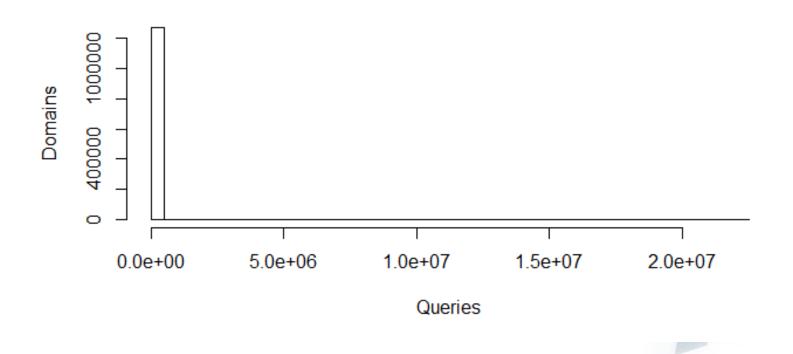
Uhm, ok. Is that like - a lot?

Ah, well, we have like 530 millions queries each day. so, well, sort of in the middle.

Am i popular? Like where on a 0-10 scale, huh?

- Single, easy to understand "popularity" figure
- Based on DNS statistics (because that's what we have?)
- Copy "Earthquake magnitude" figures (because everybody knows them)
- "DNS Magnitude"?

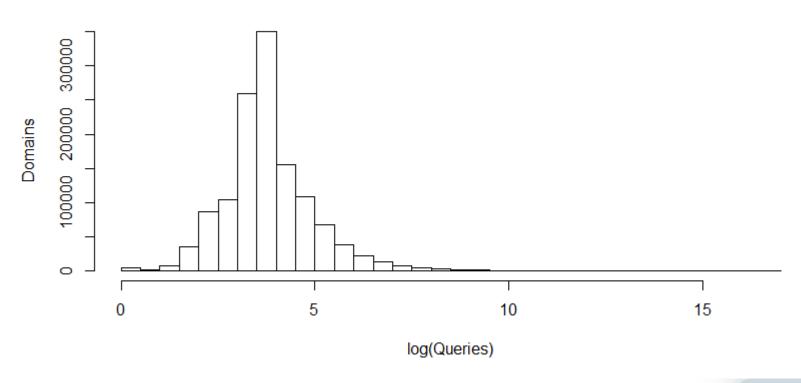
DNS Data Exploration


- Basis: DNS "query impact" of a domain
 - Assumption: Popular (..) domain -> higher query rate
- Single day: ~450 million queries
 - About 20% NXDOMAINS (not considered)
 - Queries for almost all existing domains
 - Problem: Extremely high disparity

"queries by domain" disparity

■ Top 1% of domains: **62%** of queries

Number of Domains vs. Queries



Logarithmic Scale?

Number of Domains vs. log(Queries)

- Looks more "natural"!
- Earthquake magnitudes use logarithmic scales too

Limit Scale to 0-10?

- Definition: Magnitude 10 = all queries on single Domain
 - Example: 0 < In(Q_{Dx}) < 16.91
 - Scale to In(totalqueries)
- Hence:

$$mag_{Dx} = \frac{ln(Q_{Dx})}{ln(\sum_{k=1}^{n} Q_{Dk})} * 10$$

First try... Queries-based

- Dominated by infrastructure domains
- TTL has a big impact!

```
queries query_mag
domain
                       8.678725 <- ISP, low TTL (120s!)
   anexia.at 22124665
                       8.647643 <- auth. Servers for .at
univie.ac.at 20824366
  telekom.at 3573045 7.743087 <- ISP
                       7.717387 <- auth. Servers for .at
       ns.at 3398512
   nessus.at 3031900
                       7.658810 <- Registrar
   chello.at 1613822
                       7.335218 <- ISP
  internic.at 1391180
                       7.259037 <- Registrar
              1240702
                       7.200293 <- zone apex
          at
t-systems.at
              1055778
                       7.117468 <- ISP
    inode.at
              1027223
                       7.103398 <- ISP
```


How to get around TTL impact?

- TTL expiration triggers query from same source IP address
- Approach: Count unique resolvers rather than queries
 - No matter if they query a domain once or 1000 times per day
- New basis: Number of distinct src IP addresses per domain

Hosts based top10 – Better...

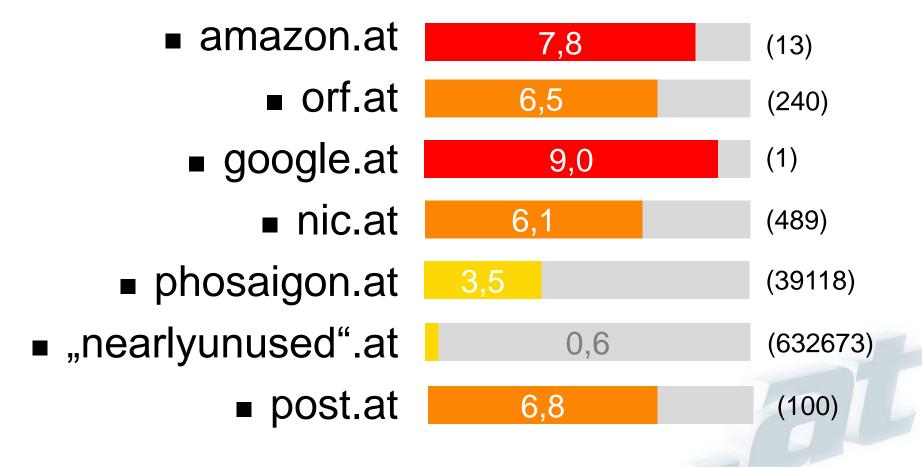
- TTL effect seems reduced
- Still dominated by infrastructure zones

```
domain
                queries hosts query_mag host_mag
  univie.ac.at 20824366 394542 8.647643 9.401667
    telekom.at 3573045 223838 7.743087 8.988109
3
     chello.at 1613822 183470 7.335218 8.843006
     nessus.at 3031900 167832 7.658810 8.778005
4
5
      inode.at
                1027223 134049
                                7.103398 8.614014
6
    regdns5.at 830090 132637
                                6.994053 8.606288 <- TTL 10800
         ns.at 3398512 128279
                                7.717387 8.581912
8
     google.at 724264 124449
                                6.924069 8.559796 <- TTL 10800
9
     anexia.at 22124665 118241
                                8.678725 8.522460 <- TTL 120
10
        nic.at 623485 118055
                                6.847181 8.521311 <- TTL 900
```


DNS Magnitude

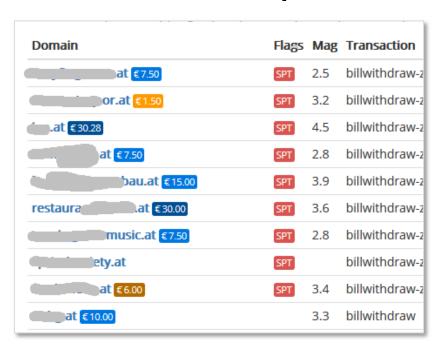
Current working definition

$$mag_{Dx} = \frac{ln(H_{Dx})}{ln(H_{tot})} * 10$$


Go for services? Web:

- A/AAAA record and www.% or origin
 - Total 44M queries, 397k hosts (1 day)

```
domain
                     queries
                              hosts query_mag host_mag
1
                      398699
                                      7.323973 8.968340
          google.at
                             105154
2
            ebay.at
                      234151
                              72845 7.021699 8.683625
3
     tripadvisor.at
                      209471
                              48626
                                      6.958443 8.370149
4
          airbnb.at
                              48373 7.069360 8.366103
                      254649
5
            yelp.at
                              41204
                                      6.757051 8.241693
                      146933
         groupon.at
6
                      125715
                              36463
                                      6.668477 8.146886
7
      vistaprint.at
                      110861
                              29375
                                      6.597066 7.979238
8
                              27845
                       59330
                                      6.242019 7.937751
             gmx.at
9
   transfermarkt.at
                       88722
                              27689
                                      6.470549 7.933394
10
          kriesi.at
                       82103
                              27248
                                      6.426516 7.920942
```

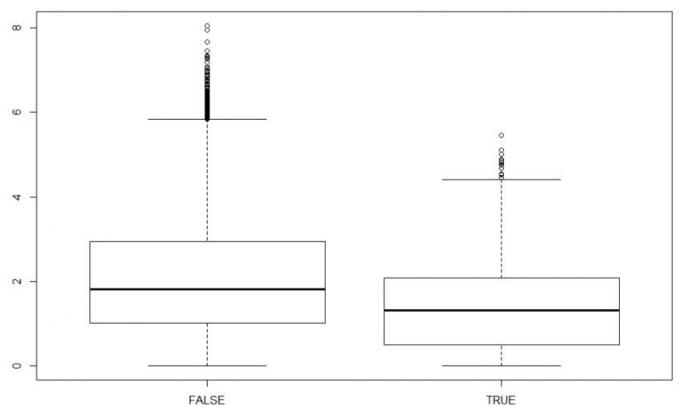


Some examples ("web" based)

Current (early) applications

Internal "BI" panel

somedomain.at 6.5

3.7 ______



NXDOMAINs

♣ Top NXDOMAINs	
Rank Domain	Magnitude
#1 ac.at	6,4
#2 sex lat	6,4
#3 at	6,3
#4at	6,2
#5 1	6,1
#6 ic'at	6,0
#7 .ac.at	6,0
#8 1000 co.at	6,0
#9 a at	6,0
#10 installati	5,9

Application – Delete propensity

- Correlation lower than expected
- But no domain deleted with mag > 5.8!
- Delete Prediction: Input to a neural network (WIP)

Tools used

- ENTRADA/Hadoop (Storage)
- Impala (SQL-Queries)
- R (prototyping)
 - PHP for production (shhh, don't tell anybody! ;)
- Results stored in Redis
- Airflow for Orchestration

~300 lines of code in total

Further work

- Refine algorithm (a-z query clients, "long tail" scale)
- NZRS work, Alexa 1M, Umbrella Top 1M list
- Study impact of DNS parameters
 - TTL
 - Prefetching
 - Future: QNAME minimization?
- ISP recursive resolvers better vantage point?

Thanks for listening!

- Questions? Suggestions?
- alexander.mayrhofer@nic.at

