

TLS and TLSA

Bindhumadhava B S & Balaji R

Computer Networks and Internet Engineering Group Centre for Development of Advanced Computing No. 68, Electronics City, Bangalore 560100

ICANN 57, Hyderabad 5th November, 2016

C-DAC

- Centre for Development of Advanced Computing)
 - A premier Research institution under MeitY, GoI
 - 11 locations; Spread across the Nation;
 - Working on the entire gamut of IT
 - C-DAC Bengaluru:
 - Research Areas:
 - Cyber Security Research, Cloud and HPC, Language and ICT
 - Computer Networks & Internet Engineering Group:
 - Perimeter Security Solutions: UTM, Network Management tools
 - Information Security: Digital Signatures & PKI
 - Internet Standards: Awareness Generation and Contributions to Internet Protocols
 - DNS Security: Associated with ICANN since 2013

Agenda

- Drawing Synergies
 - TLS
 - Certificate Validation
 - Trust Stores
 - TLSA
 - Intro on DNSSEC and DANE
 - Issues

TLS

- Widely used Internet Security Protocol!
- Structure of TLS
 - Handshake Protocol
 - Establish Shared Keys & Authenticate Server and/or Client
 - Negotiate algorithms, modes, parameters
 - Record protocol
 - Carry individual messages, encrypted by Shared Keys (Symmetric)
 - Cipher Suites
 - Algorithms for Key Exchange, Authentication, Encryption, and MAC
- Objectives of TLS 1.3
 - Clean up, Increase Security; Improve Performance
- Certificates are the key!

Certificate Validation

- A Complex Activity!
 - Algorithm in Brief
 - 1. Check for Validity (Time, CRL (except for root), Format) of Certificate
 - 2. Check and Validate the Signature in the Certificate using the issuer's certificate (which contains the public key) including the CPS (Policy)
 - 3. If the issuer's certificate is not a self-signed certificate, then continue with this certificate from Step 1
 - 4. If it is a self-signed certificate,
 - Check if the Certificate is present in trust stores (Trusted Root CA)
 - If present, trust it and exit (allow user to proceed further)
 - If not prompt the user to take a decision to trust it or leave the site

Trust Stores

- Applications manage their own trust stores
 - and come up with a set of pre-loaded certificates
 - User have to explicitly add certificates of a domain they trust, but not present in trust stores

DNSSEC

Without DNSSEC

With DNSSEC

DNSSEC – Gentle Intro

- Each Zone will have two crypto key-pairs
 - Operational keys, called Zone Signing Key (**ZSK**)
 - Sign and validate the zone records and itself;
 - Public key is stored in the **DNSKEY** record
 - Private key is typically kept safe in HSM
 - Authenticators for the operational keys called as Key Signing Key (KSK)
 - Sign the ZSK at the apex of the zone
 - Signs only the DNSKEY RRset
 - Public key becomes a DNSKEY at zone apex
- Delegation Signer
 - Represented by a Delegation Record
 - Contains the hash of KSK which resides inside parent zone

DNSSEC Summary

- DNSSEC uses Public Key Cryptography and digital signatures to provide
 - Data Origin Authentication
 - Did the DNS reply really come from the zone? (Say .com)
 - Data Integrity
 - Did an attacker modify the data in the response, since it was signed?

DNSSEC

- Provides protection against spoofing of DNS Data
- does not provide confidentiality / secrecy for DNS data
- does not protect against Denial of Service attacks

DANE

- DNS-based Authentication of Named Entities
- Allows pinning of TLS Certificates into DNSSEC Zone TLSA

TLSA

_443._tcp.www.rahul.com. IN TLSA (03 01 01 776195babe2b2309e67ffb3b30cd49f9a448 5b609b2b1bf08f1c9a15fb427127)

TLSA

- Validation of target certificate Vs certificate from DNS
 - CA in the browser is checked with Certificate from DNS
 - Certificate from target matches with Certificate from DNS
 - CA may not be listed in the Trust Stores
 - May be using a Self-signed Certificate (03)

Risks

- Allows self-signed Certificates to be pinned to a domain
- Probable Attacks such as Unknown Key Share (UKS) has been identified (Internet Draft published on Oct 9, 2016)

Summary

- TLS and TLSA (DANE) are both required to establish secure and reliable communications
 - Despite the complexities involved in them!

References

- Certificate Validation RFC 5280
- DANE RFC 6698, RFC 7671
- https://www.ietf.org/id/draft-barnes-dane-uks-00.txt