IOT SECURITY FRAMEWORK

TechDay ICANN 61

Jacques Latour, CTO
Canadian Internet Registration Authority

March 12, 2018
IoT THREAT LANDSCAPE SPECIFIC TO THE INTERNET - SCALE

• IoT device compromises:
 – Used in internet attacks i.e. MEMCACHED, MIRAI Attack (DDoS) targeting DNS servers (+1 Tbs)

• IoT traffic reflection and amplification
 – IoT device used to amplification traffic attack (DDoS) NTP, DNS, SNMP, (flavor of the day)

• The **scale** of IoT threat landscape and the breath of exploits is what need to mitigated
 – IoT devices must not have wide open internet access (protected by firewall)
 – Inbound and outbound internet access must be controlled
THE NEED FOR AN IoT SECURITY FRAMEWORK

• For many internet organizations, the #1 risk on their risk register is a large scale DDoS attack. One of the mitigation mechanisms for this risk is to prevent weaponization of IoT devices.

• Protecting IoT devices at the edge is another layer of security that should be further developed.

• The security controls would be aimed at protecting the IoT devices from the internet, and to protect the internet from IoT devices.

• The threat that IoT devices bring is scale. The scale of million and billions of IoT device is the threat we need to mitigate.
IDEA #1 – ccTLD Home Registry
Value Proposition:
• For ccTLD, to have a domain per household
• Leverage the DNSSEC chain of trust by having a registered domain for home use

IDEA #2 – Secure Gateway
Value Proposition:
• To create a security framework to protect the Internet from IoT device attacks
• To enhance the home network privacy & security with network access controls
HOW CAN WE PROTECT IoT DEVICES?

Control inbound and outbound network access

- **Rule 1: Always place IoT behind firewall**
- Rule 2: Segment network by IoT type
- Rule 3: Control access to and from the IoT device
HOW CAN WE PROTECT IoT DEVICES?

Control inbound and outbound network access

- Rule 1: Always place IoT behind firewall
- **Rule 2: Segment network by IoT type**
- Rule 3: Control access to and from the IoT device
HOW CAN WE PROTECT IoT DEVICES?

Control inbound and outbound network access

• Rule 1: Always place IoT behind firewall
• Rule 2: Segment network by IoT type
• Rule 3: Control access to and from the IoT device
ccTLD HOME REGISTRY IDEA

Internet Home Network Trust

OpenWrt Home Gateway

Internal DNS/DNSSEC
External IPSEC
D-Zone firewall

myhome.ca

IPv6 ONLY

Remote Home Network Access (VPN IPSec)

Primary DNS .CA home domain

.CA home domain

Home Gateway Provisioning

Home Network Registry

IoT Cloud Services (D-Zone Firewall)

IPv6 ONLY

CIRA - ICANN61 - IoT Security Framework - 2018-03-12
LEVERAGING THE CHAIN OF TRUST IN DNSSEC AND SOME INNOVATION TO CREATE A SECURE HOME NETWORK PLATFORM
Your local ccTLD will provision your DNSSEC signed domain internally on your gateway and externally on the Internet, and establish a secure chain of trust to your home gateway, *magically* solving all your worries and keeping your family safe 😊
WHAT DOES THIS BRING TO THE ccTLD DOMAIN INDUSTRY?

A domain name per household!!!
THE FOCUS IS ON AUTOMATION

Registry Automation + Home Network Automation = Innovation
STEP 1

- When you buy a home gateway, it comes bundled with a .CA ‘home network’ domain name

A 2nd or 3rd level domain
i.e. myhome.net.ca
i.e. myhome.ca

RFID card
(Code to activate provisioning and domain)
STEP 2

- Then you follow the provisioning instructions
 - Install & open the CIRA Home Gateway app
 - Turn on the Home Gateway
 - “TAP” your mobile to discover the home gateway
 - Pick a domain name, 2nd or 3rd level domain name
 - Enter the secret code (“TAP” RFID card)
 - Home Gateway ready for configuration

myhome.ca + code
STEP 3

- Automated Backend Provisioning @ CIRA
 - CIRA creates the .CA domain name in the registry
 - CIRA signs the .CA domain with DNSSEC
 - CIRA is primary for the external DNS view of the .CA domain
 - CIRA provides secondary DNS to the .CA domain
STEP 4

- Automated Home Gateway provisioning
 - Establish secure connection to Home Gateway
 - Securely send private DNSSEC key to Home Gateway, setup internal DNS and DNSSEC
 - Configure Home Gateway for DNS integration with registry (à la dynamic DNS) for external services
STEP 5

• Setup secure home network infrastructure
 – Using your trusted mobile & the app, “TAP” the Home Gateway to:
 • Learn the WIFI password
 • Get the IPSec password, SSO tokens and keys to VPN in your home network
 – Use your mobile and “TAP” all your IoT devices to add on your home WIFI network, easy peasy 😊
AT THIS POINT WE HAVE

• A home gateway fully provisioned with a .CA domain name, with both internal and external domain name resolution, signed with DNSSEC.
 – WIFI and other networks securely provisioned and setup
• Now we’re ready to provision the IoT devices

fridge.myhouse.ca Internal IP
printer.myhouse.ca Internal IP

Internal domain fully operational
Secured internally by DNSSEC

External domain to allow exposing internal services and make them available externally

vpn.myhouse.ca External IP
NOW, LET’S SEE HOW WE PROVISION IoT DEVICES IN HOME NETWORK

- Once the IoT device has network access TAP to discover
- IoT device exposes via RFID (or similar) the services available
- Pick relevant IoT services category for provisioning

Explaination:

1. **IoT Dashboard**
 - Status
 - Fridge
 - Door
 - Alerts
 - Video
 - Water

2. **Discover Refrigerator**
 - Status
 - Video
 - Alerts

Expose Services
JSON blob / RFID
ADDING REMOTE VPN ACCESS TO TRUSTED MOBILE

(1) Tap the mobile
Discover services

(2) Grant permission and credentials to mobile for remote home access
ADDING YOUR CAR TO REMOTE ACCESS YOUR HOME NETWORK

(1) Tap the car
Discover services

(2) Assign roles
Control car feature
View car alerts
View car status/location
Grant permission and credentials to car mobile for remote home access
WHAT DO YOU THINK?

Want to help?
GOING FORWARD, IT’S A JOURNEY!
ccTLD VALUE PROPOSITION

• Motivation
 – Ensure long term ccTLD relevance in the future of IoT
 – To create a secure <internet home> IoT environment

• Proposing ccTLD to develop a solution
 – To keep the home network safe and secure
 – To leverage DNSSEC as an innovation platform to create a hub for “home trust”
 – That leverages the ccTLD registry expertise
 – To enhance OpenWRT with this functionality
NEXT STEPS – BUILD A PROTOTYPE

• Develop a Proof of Concept and prototype
 – Using .CZ Omnia Home Gateway (openWRT)
 – Home Gateway App (Android/iPhone)
 – Develop some IoT discoverable devices (RFID)

• Use public GitHub to document the functional specification and repo for prototype software
 – Functional specification
 – Software repository
Questions?

https://github.com/CIRALabs/Secure-IoT-Home-Gateway