Running a Bug Bounty Program for your registry or registrar

Gavin Brown, CTO, CentralNic Group PLC

ICANN 63, Barcelona
Introduction

- CentralNic Group PLC includes 4 registries and 5 registrars:
 - CentralNic
 - OpenRegistry
 - KSRegistry
 - SK-NIC
 - TLD Registrar Solutions
 - Internet.bs
 - Instra Corporation
 - Key-Systems

- ISO 27001 certification for some parts of the business

- Strong focus on security, especially in the registries

- Active Bug Bounty Programs for 3 companies: CentralNic, Instra, Internet.bs
What is a Bug Bounty Program?

- A bug bounty program is a **continuous, crowd-sourced black-box penetration test**
- Independent security researchers (i.e. hackers) test your systems, submit reports, and receive payment (bounties) for them
- Used by Google, Facebook, Microsoft, IBM, Uber, Slack, Twitter, PayPal, and many others
- Often managed through third-parties, e.g. HackerOne or Bugcrowd
CentralNic’s Bug Bounty Program

- Opened in December 2015
- Runs on HackerOne
- 451 invited hackers
- 345 reports received from 36 hackers
 - 206 legitimate reports
 - 88 out of scope/no impact
 - 34 informative
 - 15 duplicates
 - 0 spam
- hackerone.com/centralnic
CentralNic’s Bug Bounty Program

<table>
<thead>
<tr>
<th>Program Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>> $20,000</td>
</tr>
<tr>
<td>Total bounties paid</td>
</tr>
<tr>
<td>$100</td>
</tr>
<tr>
<td>Average bounty</td>
</tr>
<tr>
<td>$200 - $700</td>
</tr>
<tr>
<td>Top bounty range</td>
</tr>
<tr>
<td>206</td>
</tr>
<tr>
<td>Reports resolved</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>Hackers thanked</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>about 1 day</td>
</tr>
<tr>
<td>Average time to first response</td>
</tr>
<tr>
<td>about 1 day</td>
</tr>
<tr>
<td>Average time to triage</td>
</tr>
<tr>
<td>6 days</td>
</tr>
<tr>
<td>Average time to bounty</td>
</tr>
<tr>
<td>8 days</td>
</tr>
<tr>
<td>Average time to resolution</td>
</tr>
<tr>
<td>97% of reports</td>
</tr>
<tr>
<td>Meet response standards</td>
</tr>
<tr>
<td>Based on last 90 days</td>
</tr>
</tbody>
</table>
Most common reports

- TLS config – HTTP, SMTP, XMPP, IMAP, etc – accepting weak ciphers

- Session management
 - Lack of rate limiting
 - Session invalidation

- Missing hardening headers

- Missing XSS and XSRF mitigation

- “information disclosure” – version numbers

- “text injection”
Benefits and Drawbacks

- **PRO:** Many small payments spread out over time rather than a single large payment
- **PRO:** Continuous testing – a point-in-time pen test report is obsolete as soon as it’s written
- **PRO:** Generates goodwill within the hacker/infosec community
- **PRO:** Can help nudge greyhats towards becoming whitehats

- **CON:** You’re potentially “airing your dirty laundry in public”
- **CON:** Paints a target on your business
- **CON:** Not as widely recognised as traditional point-in-time pen tests when third parties review your security
- **CON:** Needs careful management to be successful
Starting your own program

- Pick the provider that works best for you (support, costs, features, etc)
- Define your scope – make it small at first, then expand
- Make exclusions explicit – read other program’s scope for ideas
- Make your bounty calculation rules transparent and fair
- Use incentives to direct hackers towards areas that need more attention
- Start private, but aim to go public
- Provide test accounts when asked
Dealing with hackers

- Self-employed security professionals
- Often starting out in their infosec careers
- Want to leverage their hacking experience into jobs at “serious” infosec companies
- Most are not native English speakers
- Not always l337, might be n00bs, be patient and polite!
Dealing with hackers

- False positive rate is much lower than automated pen tests, but some noise still gets through. Always ask for evidence/PoCs if not provided.

- Set SLAs for first response, triage, resolution and bounty payment.

- Program must be supported by robust change management and QA processes.

- Try to fix everywhere to avoid the same issue being reported repeatedly.
 - Encourages best practices in operations, e.g. config management.
Calculating bounties

- Score = Complexity \times Severity
- Complexity = how hard was it to find this bug?
- Severity = how valuable is the asset it targets? How easy to exploit?
- Score translates to $$$
- Always be prepared to justify your calculation and consider changing your policy in response to feedback
What to Expect

- Spam
- False Positives
- Issues with low/zero impact
- Reports targeting web applications only
- Reports derived from automated scanning tools
- Your program can be tuned to improve the SNR
- Continuous improvement of your organisation’s security
gavin.brown@centralnic.com

Signal: +447548243029

hackerone.com/centralnic

centralnic.com/registry/security