Anycast Peering and Sinkholes

ICANN - 63, Barcelona
ccNSO Tech Day
Monday 21 October, 2018
Agenda

• Introduction
• Some anycast best practices
• Sinkhole examples
Intro: Who is Greg Wallace

1995

2001

2008

2011

2015

2017
Intro: Who is NetActuate

- Global infrastructure provider and integrator: connectivity, colocation, cloud, IaaS, and managed services
- HQ in Raleigh, NC
- 7th largest global network by number of peers (source: https://bgp.he.net/report/peers)

- 2,100+ Clients
- 33 Datacenters
- 112 Expansion PoPs
- 2400+ BGP Peers

- 25 billion Transactions Processed Per Day
- 7th Generation Cloud Platform
- 25 Domestic & International Markets
- 20 Internet Exchanges
Anycast best practices

1. Avoid SPOFs (networks/vendors)
2. Global monitoring
3. DDoS mitigation plan
4. Announce with even AS Paths
5. Make use of BGP communities
6. Consistent transit providers
Avoid single network or vendor dependencies

<table>
<thead>
<tr>
<th></th>
<th>SINGLE DNS PROVIDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL FORTUNE 50</td>
<td>68%</td>
</tr>
<tr>
<td>TOP 25 SAAS PROVIDERS</td>
<td>44%</td>
</tr>
<tr>
<td>FTSE 100</td>
<td>72%</td>
</tr>
</tbody>
</table>

According to Thousand Eyes Global DNS performance report
Sample anycast groups

Anycast Group #1
San Jose
Chicago
New York

Anycast Group #2
Los Angeles
Dallas
Ashburn

Anycast Group #3
Seattle
Denver
Miami
DDoS mitigation

- Have detection tools in place and automated response plan
 - NetFlow/sFlow sampling
 - Open source tools to visualize and alert
 - NfSen
 - FastNetMon
 - Commercial tools
 - Kentik
 - SolarWinds

- DDoS mitigation plan
 - Make it as automated as possible
 - E.g. pre-programmed routing rules to mitigation POPs for scrubbing
 - Run drills regularly to stress test your response
Monitoring

• Open source and commercial options
 • Commercial
 • Catchpoint, Grafana worldPing, Thousand Eyes
 • Roll your own + open source
 • RIPE Atlas probes
 • (article: https://labs.ripe.net/Members/kenneth_finnegan/measuring-anycast-dns-services-using-ripe-atlas)
 • Public cloud and VPS providers
 • Nagios, Icinga

• Monitoring probes need to be distributed to show you what end users are seeing
 • Put probes on diverse networks and on eyeball networks (RIPE Atlas is best for this)
 • Avoid putting probes on inferior networks/infrastructure (this can trigger false alerts)
 • Authoritative DNS providers should be probing popular resolvers globally (Google 8.8.8.8, Cloudflare 1.1.1.1, etc)
General network monitoring

- Anycast POP
- Monitoring Node

netactuate.com @netactuate
General network monitoring

= Anycast POP
= Monitoring Node
Monitoring example: Icinga + satellites

Icinga is an open source distributed monitoring toolkit, example pinging an anycast IP from multiple regions.
What’s a sinkhole? Why are they bad?

- Suboptimal routing path that can happen unintentionally when deploying Anycast across multiple geographic regions
- We often see sinkholes happening with IXes
- More peering, more problems (sometimes)
Sinkhole example

1. Users of DNSFilter.com in Belgium go on the Web

2. Users’ DNS requests should be handled from DNSFilter servers in EU, they are deployed in Amsterdam, London and Frankfurt

3. But, no. The traffic is sent to our Johannesburg POP
What are the facts

1. DNSFilter recently deployed to Johannesburg (JNB) for providing lower latency to users in South Africa
2. DNSFilter announced their anycast prefixes to the Internet Exchange, NAPAfrica in Johannesburg
3. Analyzed client request IPs on the JNB DNS servers and found some out-of-region client IPs
4. Testing confirmed users from Belgium were landing in JNB
AS Path: BGP is not latency or geographically aware

Test from RIPE Atlas using a probe in Belgium. The graph is from the TraceMON tool which shows AS hops, relatively short path of only 4 total AS numbers from client to server.
Traffic from EU going to NAPAfrica IX

Latest Traceroute Result for Measurement #16546966

2018-10-18 14:58 UTC
Traceroute to 103.85.42.1 (103.85.42.1), 48 byte packets

1 192.168.1.1 1.587ms 0.846ms 0.639ms
2 91.176.240.1 1.240-176-91.adsl-dyn.isp.belgacom.be 35.711ms 141.048ms 130.943ms
3 91.183.244.24 24.244-183-91.adsl-static.isp.belgacom.be 11.163ms 10.681ms 10.71ms
4 91.183.246.108 ae-12-1000.ibrstr5.isp.belgacom.be 10.711ms 10.485ms 10.605ms
5***
6** 94.102.160.37 AS6774 10.943ms
7 94.102.162.35 AS6774 15.325ms 15.435ms 15.75ms
8 10.246.112.49 170.899ms 170.665ms 170.728ms
9 10.246.112.46 171.208ms 170.936ms 171.452ms
10 196.60.9.147 196.60-9-147.ipr.jiburg 171.093ms 170.706ms 171.035ms
11 104.225.106.13 13.106.225.104.ptr.ancast.net AS36236 171.522ms 171.463ms 171.799ms
12 103.85.42.1 AS64089 171.011ms 170.926ms 171.049ms

NAPAfrica peering IP

171ms RTT

150ms latency increase
Sinkhole identified and fixed.
Why? One network in EU was peering with out-of-region IX Route server but not peering with in-region IX route servers. Traceroute looks better now after adding direct peering sessions in EU:
Sinkhole identification

- Perform pings from your anycast nodes back to source IPs
 - If latency is high, add to list to investigate
- For source IPs that do not respond to ping:
- Maxmind GeoLite database (free) can be used to identify likely problems to investigate further
Sinkhole Example #2: non-consistent transit

- Quad 9 (9.9.9.9) is a free recursive DNS service
- Sinkhole can happen from end-user clients to 9.9.9.9:
- They are announcing to Level3 transit in the US, but not in EU. This results in traffic hitting Level3 in EU and carried to west coast US:

![Traceroute to 9.9.9.9 (9.9.9.9), 48 byte packets](image)

Milan to San Francisco
Sinkhole Example #2: non-consistent transit

- Level 3 Looking Glass view

MUNICH GERMANY Traceroute results for: 9.9.9.9 (dns.quad9.net)
Tracing route to 9.9.9.9
1 ae-0-11.bar1.SanFrancisco1.Level3.net (4.69.140.145) 150ms 150ms 154ms
2 packet-clearing-house.gigabitethernet9-28.ar1.pao2.gblx.net (208.178.194.98) 155ms 181ms 155ms
3 ***

From Munich to San Francisco on Level3 150ms RTT
Thank you!

WWW.netactuate.com

@netactuate

gwallace@netactuate.com